Biodiversity insurance hypothesis in the real world

This year is being great and we have another great publication in Ecology Letters. We use long-term plant and pollinator data to show that high levels of biodiversity ensure plant pollinator matching over time despite climate change.

The story behind the paper starts 2 years ago (yes, it always take time!) when we did a paper showing that in general, plants and bees are advancing its phenology due to climate change at similar rates. The problem of this general patterns is that we don’t present data on any particular case study to show how this “general pattern” translates to a given system. My idea was doing a small follow-up using apple orchards as a case study. I ran the first analysis and saw that indeed, apple flowering and bee pollinators are advancing at similar rates. Cool, We can now provide a case study that validates the pattern observed! But then I went further and tried to see what happens when the main apple pollinators are analyzed one by one. Here the things got interesting because some bee species DO show a phenological mismatch with apple, but the total synchrony is stable at the community level because the effects of individual species cancel out. When I showed the results to Rachael, she immediately related them to the biodiversity insurance hypothesis, and we start working on validating this idea. That meant looking for more data, including a simulation, and a lot of fun reading the biodiversity ecosystem function literature. Is amazing how much of what we know relating biodiversity and ecosystem functioning is based on experiments in grasslands, so applying those concepts to real world trophic interactions was intellectually very stimulating. I like a lot the final paper and I am looking forward to work more on this topic, hopefully with less complex data.

Advertisements

Discussion

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s