I have to admit I didn’t know much about Marie Curie a few days ago (other than the “trivia” facts such as that she discovered the radioactivity and was the first women winner of a Nobel prize). But I just read a book* about her and I really loved it. Oh my god, she was unique in a thousand ways. The book is written by Rosa Montero, and uses Marie Curie’s diary written after Pierre Curie death to talk about very personal things including death, gender balance, society pressures, self-esteem, and many other main topics in life. So it’s not a typical biography, but an excuse to reflect on important things. I won’t go into details, but I highly recommend it.
And while reading the book I found a quote by Pierre Curie that reflects at perfection my actual feeling in science.
“Besides, we must make a living, and this forces us to become a wheel in the machine. The most painful are the concessions we are forced to make to the prejudices of the society in which we live. We must make more or fewer compromises according as we feel ourselves feebler or stronger. If one does not make enough concessions he is crushed; if he makes too many he is ignoble and despises himself”
I do think finding this balance is what kept you (and your science) alive in this world.
Which brings us to the last point. I just discussed a result with my PhD student. It is not significant (p = 0.08), but the effect size is quite big (probability something happening goes from 0.6 to 0.2), but the sample size is small (n < 20). The unavoidable question raised. “It’s 0.08 marginally significant?”, “can we say there is an effect?” My reply was that in a perfect world we would use this data to frame a hypothesis. Then, we would collect 30 more independent data points and test it for real. But the project is almost over, he needs to defend the PhD soon and we are not in a perfect world. So we make concessions. And we will try to publish what we have and cross our fingers hoping that someone else will validate our finding. But we don’t concede too much either, and we should make sure to discuss the result appropriately. A potential large effect size, but very variable and based on a limited sampling size. Or in other words, we will try to avoid the p-value dichotomy once more.
*The book is edited only in Spanish, French, Dutch, and Portuguese… for once, sorry English speakers!